
N3, 2000

Конструкция здания Дома Книги на Невском проспекте - пример заимствования американского опыта строительства.

Лобовиков Д.А.

Здание по адресу Невский пр.,28 построено в 1902-1904 г.г. по проекту петербургского архитектора графа П.Ю.Сюзора в стиле модерн. Заказчиком строительства являлась американская компания "Зингер", решившая открыть в Санкт-Петербурге главное представительство АО "Зингер и К⁰" и построить в России предприятие по производству швейных машин [1].

Участок застройки на углу Невского проспекта и канала Грибоедова, размерами 28,5х53 м, был куплен за 1,0 млн.руб., что даже для центра Санкт-Петербурга было весьма дорого. Компания "Зингер" собиралась построить высотное здание с одной лестницей и несколькими лифтами, но уже после покупки участка была неприятно удивлена существовавшим в городе ограничением высоты застройки в 11 саженей (23,47м до верха карниза). Следует заметить, что через год после окончания строительства здания на Невском проспекте, компания построила в Нью-Йорке на Бродвее самое высокое на тот момент здание в мире. 58—этажное здание имело размеры 19х19м, высоту 195 м, одну лестницу, 16 лифтов и ресторан в застекленном куполе [4].

При строительстве Дома Книги основная задача архитектора состояла в том, чтобы вписать представительское здание ограниченной высоты в участок застройки малых размеров. Для выполнения этой цели было запроектировано 7 этажей, включая полноценный мансардный этаж с

Стр. 1 из 8

возвышающимся над ним куполом и шаром, и под всем зданием устроен просторный подвал. Для улучшения освещенности помещений предусматривались два световых двора, первые этажи которых перекрывались остекленными фонарями.

Впервые в России для увеличения размеров окон и уменьшения размеров простенков несущая конструкция была выполнена по типу американских

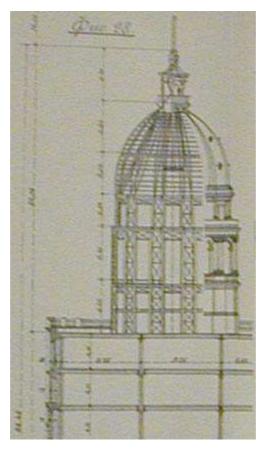


Рис.1. Фрагмент конструкции здания World Building в Нью-Йорке

высотных зданий. Основная часть здания вдоль Невского проспекта и канала Грибоедова имеет металлический остов, заключенный внутрь кирпичной кладки стен.

Строительству здания предшествовало появление двух монографий [2] и [3], в которых приведены схемы несущих конструкций американских зданий, подобные конструкциям Дома Книги. Для примера на рис.1 нами приведен фрагмент конструкции здания World building в Нью-Йорке со схемой опирания купола, аналогичной схеме, примененной в Доме Книги.

На рисунке видно, что пилоны купола, проходя через помещение верхнего этажа, опираются непосредственно на балки междуэтажного перекрытия.

По проекту 1-ый и часть 2-го этажа были предназначены для размещения банка, магазина АО "Зингер" и склада Северного Торгового Общества. На 3-6 этажах размещались конторы англоамериканского типа: с общим коридором, туалетом, столовой и прислугой. В связи с проектированием ремонта здания и в связи с отсутствием данных по конструкциям НПФ "Геореконструкции" было поручено проведение обследования. Нами были сделаны необходимые вскрытия конструкций и проведены поверочные расчеты несущей способности перекрытий.

Анализ конструктивной схемы здания показал, что металлический каркас здания - колонны, перемычки, ригели и балки - являются несущими конструкциями для перекрытий и покрытия. Кирпичные простенки — самонесущие. Стены дворовых флигелей и стены лестничных клеток — кирпичные самонесущие. Стойки каркаса обложены кирпичом на цементном растворе. Узел сопряжения стоек в уровне пола 5 этажа приведен на рис.2. Ветви стойки каркаса выполнены из

Стр. 2 из 8 10.11.2010 16:34

двутавра №30. База стойки чугунная. Стойка выполнена цельной на 2 этажа. Стык стоек- на уровне плинтуса пола. Все соединения – на заклепках и болтах.

Рис.2. Узел сопряжения стоек в уровне пола 5 этажа

При вскрытии отмечено высокое качество кирпича и раствора.

Перекрытия здания — металлические балки из двутавров № 24-26 Русского сортамента, опирающиеся на ригели каркаса, главные балки и кирпичные стены. Заполнение между балками — бетон на кирпичном бое. По результатам проведенных расчетов было установлено, что допускаемая полезная нагрузка на перекрытия 3-7 этажей не превышает величины $200 \, \text{кг/м}^2$.

Покрытие мансарды выполнено по различным схемам. На участке вдоль канала Грибоедова покрытие - совмещенное по бетонным сводам, опирающимся на нижние пояса арочных ферм. Роль затяжек арочных ферм выполняют балки перекрытия.

На участке вдоль Невского проспекта основной несущий элемент покрытия — неразрезная коньковая трехпролетная ферма высотой 1,95 м с параллельными поясами. Ферма опирается на стены и на арку мансарды. На ферму опирается комбинированная арочно-ферменная конструкция: нижние пояса ферм, несущих кровлю, переходят в арки, опирающиеся на балки перекрытия. Нижние пояса ферм и арки вбетонированы в своды и в чердачное перекрытие. Особенностью конструкции являются катковые опоры ферм покрытия, компенсирующие неравномерные деформации каркаса здания и температурные деформации покрытия (рис.3).

Стр. 3 из 8 10.11.2010 16:34

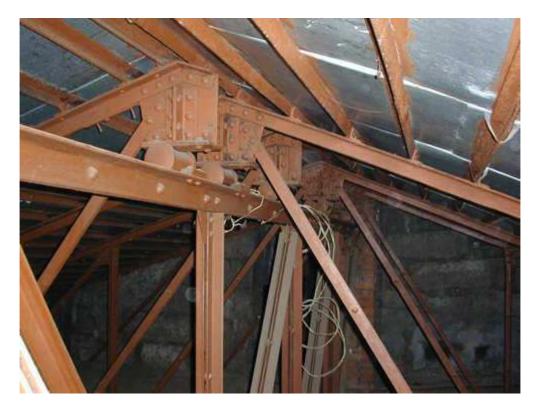


Рис. 3. Конструкция ферм покрытия. Подвижные опоры предназначены для компенсации неравномерных деформаций каркаса и стен.

Все своды являются либо несущими элементами, либо элементами, обеспечивающими пространственную жесткость покрытия. Покрытие отличается продуманностью конструктивной схемы и тщательностью исполнения.

Металлический купол здания имеет наружный диаметр 6,7 м. Высота вместе с опорными частями – 13 м. Металлический каркас купола состоит из пяти пилонов составного решетчатого сечения, соединенных между собой кольцами жесткости и фермами, несущими бетонный свод углового помещения мансарды. На купол опирается металлическая труба диаметром 0,72 м и высотой 2,9 м, несущая остекленный шар диаметром 2,8 м. Металлические конструкции купола показаны на рис. 4 и 5.

Рис.4. Верхняя часть металлического каркаса купола.

Стр. 4 из 8 10.11.2010 16:34

Рис. 5. Пилон купола. Поясной лист толщиной 7мм полностью корродирован и удален при ремонте. Накладки, фасонки и элементы крепления горизонтального кольца жесткости корродированы – до 50% площади поперечного сечения.

Основной дефект конструкции купола, выявленный при обследовании — это коррозия уголков пилонов и листа, прикрепленного к наружной ветви пилонов. Площадь сечения уголка, имеющего сечение 100x100x10 мм, уменьшена в результате коррозии на 30-50%. Это обстоятельство, отмеченное рядом специалистов, послужило основанием для заключений о необходимости усиления или даже воссоздания купола. Для оценки влияния коррозионных повреждений на несущую способность купола был проведен поверочный расчет всей конструкции с учетом податливости опорной конструкции купола — балок междуэтажного перекрытия.

Для проверки правильности расчет выполнялся по двум расчетным схемам: уточненной и приближенной. Расчетные схемы и отдельные результаты расчетов представлены на рис.6 и 7.

Схема № 1. (Представлена на рис. 6). Расчетная схема максимально приближена к существующей конструкции: элементы колец жесткости, а также сечения пилонов в меридиональной плоскости (в плоскости образующей) соответствуют действительным сечениям. Сечение пилонов в плоскости, перпендикулярной образующей купола, приняты двутавровыми. Таким образом, пилоны представлены в виде плоских ферм, обладающих пространственной жесткостью. Фермы имеют жесткие узлы, при этом расчет показал, что учет шарнирного прикрепления элементов решетки не существенно влияет на жесткость пилонов и усилия в поясах пилонов.

Наличие вертикальных полуарок, расположенных между пилонами и несущих нагрузку от остекления, в запас расчета не учитывается.

Cтр. 5 из 8 10.11.2010 16:34

Схема позволяет оценить величину усилий в ветвях пилонов и в элементах решетки пилонов и колец жесткости. Схема также позволяет учесть возможность удаления отдельных элементов, например, в процессе реконструкции купола.

Схема № 2. (Представлена на рис.7).

Схема является упрощенной моделью: пилоны и горизонтальные фермы жесткости заменены стержнями. Жесткости заданы численными значениями. Жесткости колец получены из расчета по схеме № 1. Жесткости пилонов получены из расчета пилонов как составных решетчатых сечений (сквозных сечений).

Данная схема является упрощенной и позволяет легко анализировать результаты различных воздействий, а также влияние отдельных элементов на работу конструкции в целом. Схема использована также для проверки расчета по схеме \mathbb{N} 1.

Для определения усилий использовалась программа расчета LIRA. По результатам расчетов оценивался уровень напряжений в элементах купола, проверялась деформативность купола, а также анализировалась возможность удаления отдельных элементов каркаса в случае перепланировки помещений.

Основные выводы по результатам обследования свелись к следующим позициям:

1. Металлический каркас купола был запроектирован с многократным запасом прочности. По всей видимости, при его проектировании в первую очередь учитывалась возможность коррозии элементов. Как показало обследование, такой подход вполне оправдал себя. После замены металлического листа наружной ветви пилонов уровень напряжений в сечениях уголков, ослабленных коррозией, не превысит 600-700 кг/см², что меньше величины расчетного сопротивления стали, условно принимаемой равной 1700 кг/см².

Таким образом, замена металлического листа обеспечит требуемую несущую способность каркаса. Проводить усиление самих корродированных уголков пилонов не требуется.

2. Основным параметром, влияющим на характер работы купола, является гибкость балок перекрытия, на которые опираются пилоны купола. Из-за различной податливости балок в точках опирания пилонов, происходит перераспределение усилий во всем каркасе купола. Основную нагрузку воспринимают три пилона, установленных ближе к опорам балок перекрытий — это пилоны по осям 2, 4, 5. В результате уровень нагружения пилонов отличается в два и более раз.

Податливость балок перекрытия также является основным фактором, влияющим на перемещения купола. Расчеты показывают, что при действии ветра горизонтальное перемещение верхней точки шара составляет около 30 мм, а вертикальные перемещения балок перекрытия достигают 4 мм. При жестком опирании пилонов на неподвижные опоры горизонтальное перемещение верха шара составило бы всего 7 мм. То есть, перемещения купола в основном происходят за счет прогибов балок перекрытия.

При этом следует отметить, что фактические перемещения каркаса купола от действия ветровой нагрузки меньше расчетных значений. В первую очередь это объясняется включением в работу железобетонных сводов покрытий примыкающих помещений. Вскрытие показало, что прогоны сводов, выполненные из металлического уголка, приклепаны к элементам каркаса купола, что существенно ограничивает возможность горизонтальных смещений купола.

При ремонте купола следует учесть, что соответствующие узлы креплений являются рабочими и увеличивают жесткость конструкции купола.

Стр. 6 из 8 10.11.2010 16:34

- **3.** Конструкция купола имеет существенный недостаток наличие шлакоблочного заполнения пилонов, кольца жесткости, вертикальных ферм. Заполнение способствует ускоренной коррозии металла.
- В целом проведенный комплекс обследований и расчетов позволил доказать, что нет необходимости в замене конструкций купола, они могут быть сохранены и нуждаются лишь в локальном ремонте.

<u>ЛИТЕРАТУРА</u>

- 1. Журнал "Строитель". 1904. С.657-674.
- 2. Лихачев П. Железокаменная конструкция сооружений. Инженерный журнал. 1896. №11, 12.
- 3. Эвальд В.В. Конструктивные особенности американских зданий и естественные камни в сооружениях в Соединенных Штатах. СПб. 1895.
- 4. Журнал "Зодчий". 1906. №4. с.34.

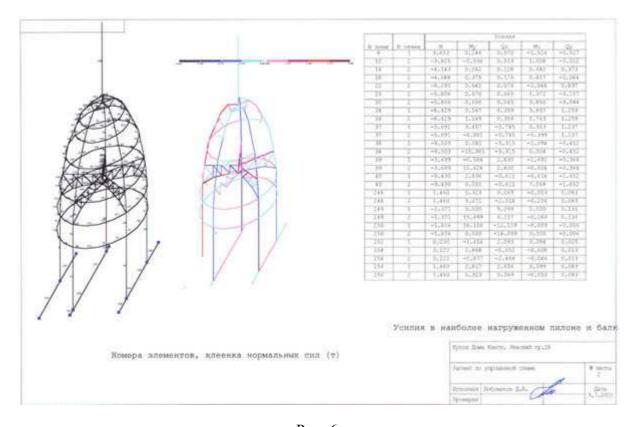


Рис. 6.

Стр. 7 из 8

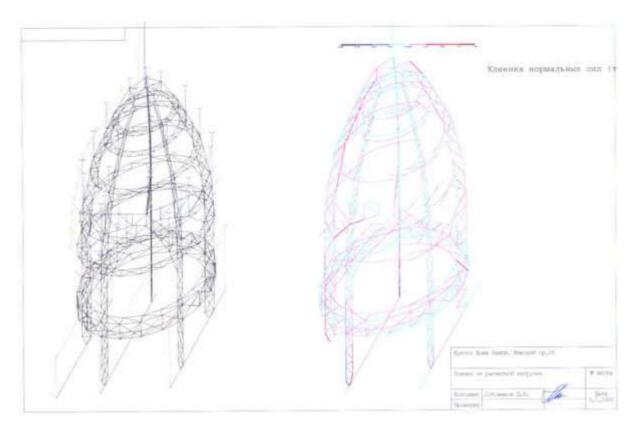


Рис. 7.

Стр. 8 из 8