N3, 2000

Геокриологическое обеспечение технологических решений при устройстве оснований, фундаментов и реконструкции сооружений в зимних условиях

Карлов В.Д.

При производстве работ по устройству котлованов, подготовке оснований, возведению фундаментов, а также реконструкции зданий и сооружений в зимних условиях строители сталкиваются *с проблемой оценки морозоопасности грунтов* и принятия правильных решений по обпеспечению надежности возводимых объектов. Под морозоопасностью грунтов в строительстве понимают их способность в процессе *промерзания-оттаивания* оказывать влияние на устойчивость сооружений при взаимодействии с фундаментами или иными конструкциями. В соответствии с требованиями СНиП 3.02.01-83 выбор способа производства работ по устройству оснований и фундаментов должен определяться *на основании данных инженерно-геологических исследований*. При указанных работах в зимних условиях результатов стандартных изысканий будет уже недостаточно. Для принятия технологических решении необходимы дополнительные данные, характеризующие криогенные (мерзлотные) свойства грунтов в процессе промерзания – оттаивания. Это определяется необходимостью учета морозоопасных свойств грунтов, которые влияют на устойчивость и прочность оснований, фундаментов и сооружений в период сезонного промерзания и последующего оттаивания.

Морозоопасные свойства сезоннопромерзающих грунтов характеризуются: коэффициентом морозного пучения е fh (относительной деформацией морозного пучения промерзающего слоя); давлением морозного пучения pth, нормальным к подошве фундамента или иной конструкции, взаимодействующей с промерзающим грунтом; удельным значением касательной силы морозного пучения t fh, действующей вдоль боковой поверхности фундамента или стены, заглубленной в грунт; существенным понижением величины предельного сопротивления сдвигу оттаивающего слоя грунта t th, u, а следовательно и параметров его прочности – угла внутреннего трения j th и удельного сцепления Cth. Из всех указанных характеристик только определение величины удельной силы морозного пучения t th возможно для практического использования по данным нормативной (табл.9 СНиП 2.02.04-88) или технической литературы [1].

В настоящей статье рассматриваются предложенные автором методики оценки остальных показателей морозоопасных свойств грунтов в строительстве. Прогноз показателей морозопасности грунтов является основным и наиболее доступным методом для решения практических задач, связанных с проектированием малозаглубленных и поверхностных фундаментов легких сооружений различного назначения. Технологический аспект прогнозов деформаций и сил морозного печения при промерзании грунтов и степени снижения их прочности в процессе последующего оттаивания определяется недоступностью решения следующих инженерных задач в проектах организации и производства работ по устройству фундаментов в зимних условиях:

- 1- установления степени пучинистости промерзающих грунтов, величины их деформаций и силового воздействия на фундаменты, подпорные стенки, ограждения котлованов и другие конструкции при взаимодействии с промерзающим грунтом (по результатам оценки интенсивности деформаций е f и нормальных сил pfn морозного пучения);
- 2 определения несущей способности оттаивающего основания, промороженного в период строительства, реконструкции или консервации объекта по, по величине показателей прочностных свойств грунтов в процессе оттаивания (j_{th} и C_{th});
- 3 оценки устойчивости промороженных откосов котлованов или креплений их стенок при весеннем оттаивании грунтов в связи с уменьшением значений показателей их прочности j th и Cth;
- 4 установления сроков и темпов нагружения оттаявшего (естественного или искусственного основания по результатам прогноза "восстановления" прочности грунтов после оттаивания вследствие их консолидации.
- 5 установления несущей способности основания и давления на ограждения оттаивающих песчаных грунтов при динамических воздействиях в связи с влиянием последних на прочность песков при оттаивании (t th.a).

Надежность оснований, фундаментов и сооружений, возводимых в зимних условиях, должна быть обоснована расчетами на основе прогнозирования деформаций и сил морозного пучения при промерзании, снижения показателей прочностных свойств грунтов в процессе последующего оттаивания и в соответствии с этим — назначения научно-обоснованных мероприятий по уменьшению морозоопасности грунтов. Величина относительной деформации морозного пучения промерзающего слоя грунта основания (коэффициент пучения) может быть определена по формуле автора в зависимости от основных факторов, влияющих на интенсивность этого процесса:

$$\mathcal{E}_{fp} = (\mathcal{X} \ \mathbf{w}_{\mathbf{v}} - \mathcal{S} - \mathcal{W} \mathcal{O}) \cdot \mathcal{X} \cdot \mathcal{P}_{T}, (1)$$

где е $_{\mathrm{fp}}$ – коэффициент морозного пучения с учетом внешнего давления на промерзающее основание; s - средняя величина напряжения в промерзающем слое грунта основания; a , b , y - экспериментально установленные параметры, характеризующие в обобщенном виде пучинистые свойства грунтов и определяемые по таблице в зависимости от вида глинистого грунта, его числа пластичности и предела текучести; k - коэффициент, учитывающий влияние подземных вод на интенсивность морозного пучения в зависимости от расстояния от границы промерзания до уровня подземных вод; w_{v} – средняя величина объемной влажности промерзающего слоя грунта; g т – коэффициент, учитывающий влияние климатических условий района строительства на интенсивность морозного пучения грунта, определяется по таблице в зависимости от нормативной глубины промерзания.

Величина морозного пучения грунта $f_{
m fp}$ может быть определена по формуле:

$$f_{fp} = \mathcal{F}_{fp} \cdot h_f$$
, (2)

где е $_{\mathrm{fp}}$ – коэффициент морозного пучения грунта, определяемый по формуле (1); $\mathrm{h_f}$ – глубина промерзания грунта ниже подошвы фундамента.

Стр. 1 из 3

Для оценки величины удельного давления морозного пучения грунта p_{fh} используются выражения (1) и (2). Величина указанного давления зависит от степени стеснения (ограничения) деформации морозного пучения промерзающего основания. При свободном перемещении ненагруженной поверхности основания (f_{fo}) значение p_{fh} равно нулю. В условиях полного исключения деформации пучения (e_{fp} =0 или f_{fp} =0) значение p_{fh} будет равно нулю. В условиях полного исключения деформации пучения (f_{fo} -S_k) за счет податливости системы сооружение-основание (S_k) или при устройстве компенсаторов, деформирующихся на величину S_k, удельное давление морозного пучения p_{fh} будет определяться пропорционально степени стеснения деформирования промерзающего основания (рис.1).

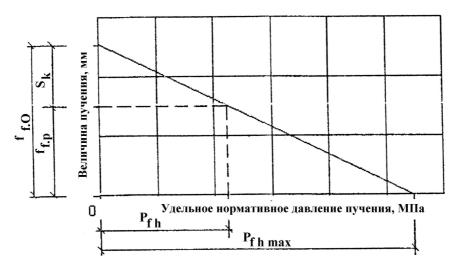


Рис.1. Зависимость величины удельного нормального давления морозного пучения от величины стесненности деформации пучения $(f_{fb}=f_{fo}-S_k)$

Расчеты показывают, что интенсивность морозного пучения грунта коэффициент пучения) можно уменьшить в несколько раз за счет понижения уровня подземных вод от границы промерзания на величину z (см.табл.1).

Таблица 1

					Средние значения коэффициентов пучения грунтов в зависимости от влажности (w) и средние															
Величины z, c и w	значения положения уровня подземных вод z и с , отн. ед.																			
	Супеси						Суглинки							Глины						
Z, M	1,3	0,7	0,3	0,2	0		2,2	0,9	0	,5	0,3		0	3,0	1,3		0,5	0,2		0
c	1,0	1,5	2,5	3,0	4,	3	1,0	2,0	3	,0	4,0	5	5,5	1,0	2,0		4,0	6,0		7,5
Коэффициенты морозного пучения е f																				
W=Wp	0,024	0,0	36 0,	060 0,	072	0,103	0,0	0,029		0,0	87 0,116		0,1	60 0,	030	0,060	0,1	120 0,180		0,225
W=WL	0,033	0,0	50 0,	083 0,	0,100 0,14		0,0	54 0,108		0,10	62	0,216		97 0,	049	0,098		98	0,294	0,368
	При W>Wp, W <wp w="" и="">WL, W<wl< td=""><td></td></wl<></wp>																			
						Коэффицие	нты пуче	ния определ	яются и	нтерпол	яцией и эк	страполя	щией							

Поэтому инженерно-мелиоративные мероприятия по понижению степени морозоопасности грунтов могут оказаться более эффективными по сравнению с другими, направленными на обеспечение устойчивости оснований, фундаментов, подпорных стенок и других сооружений, возводимых в зимних условиях.

В настоящее время традиционные дренажные устройства могут быть существенно усовершенствованы в связи с возможностью использования новых синтетических фильтрирующих материалов и более производительной технологии их выполнения. Это особенно важно, когда дренирование осуществляется на период производства работ. Может быть осуществлена как кольцевая, так и лучевая схема водозаборов, а дренирование – путем укладки в узкие щели, прорезаемые барочными машинами, фильтрующих тканей типа Тураг.

Интенсивность морозного пучения, зависящая в основном от плотности миграционного потока влаги к границе промерзания из талых подстилающих слоев, непосредственно определяет и степень снижения прочности грунта в процессе последующего оттаивания. Это объясняется зимним влагонакоплением в промерзающем слое, приводящим к переувлажнению грунта при оттаивании и образовании новой посткриогенной структуры. Оттаивающие глинистые грунты по своим прочностным свойствам представляют собой истиннопластичные грунты, полностью лишенные "жесткого структурного сцепления" (по Н.Н.Маслову). Предельное сопротивление сдвигу отмаивающего грунта (t thu) и предельное сопротивление сдвигу того же грунта до промораживания (t u) как показывали результаты исследований связаны соотношением

$$t_{thu} = t_u(a-b \times w_v), (3)$$

где а и b — параметры, зависящие от вида грунта и его состояния; w_v — объемная влажность оттаивающего грунта, определяемая экспериментально или на основании расчетов миграционного влагонакопления, в том числе, приближенно по величине коэффициента

Стр. 2 из 3

морозного пучения [2].

На основании установленных закономерностей изменения прочностных свойств при оттаивании сезоннопромерзающих грунтов разработана методика приближенного определения величины удельного сцепления C_{th} и угла внутреннего трения j_{th} путем уменьшения аналогичных характеристик грунтов до промерзания (С и j) за счет понижающих коэффициентов:

$$C_{th} = c/g_{g(c)\times g \text{ mf M j th}} = j/g_{g(j)th\times g \text{ mf}}, (4)$$

где g g(c)th и g g(j)th – коэффициенты надежности по грунту при его оттаивании соответственно для удельного сцепления и угла внутреннего трения;

 g_{mf} – коэффициент, учитывающий влияние интенсивности миграции влажного и морозного трения на формирование посткриогенной структуры оттаивающего грунта на его прочностные свойства.

Составлены таблицы значений понижающих g g(c)th, g g(j)th и g mf в зависимости от вида грунта, его состояния по консистенции и величины коэффициента морозного трения грунта при его промерзании в конкретных условиях строительной площадки.

Определение показателей прочности оттаивающего грунта j_{th} , C_{th} и $t_{tn,u}$ по изложенной выше методике позволяет оценить величину расчетного сопротивления R_{th} и предельного давления $P_{th,u}$, а также установить сроки консолидации грунта по истечению которых можно передать ту или иную величину нагрузки на оттаявшее основание.

Предельное давление на оттаивающее основание можно рассчитать по формуле:

$$P_{th.u} = t_{tn.u}/0.31.(5)$$

За расчетное сопротивление следует принять отношение величины предельного сопротивления к коэффициенту надежности (g n), т.е.

$$R_{th} = P_{th.u}/g_{n.}$$
 (6)

Определение R_{th} возможно и по методике СНиП 2.02.01-83* с использованием значений j th и Cth.

Устойчивость откосов и ограждений котлованов при промораживании глинистого грунта в зимний период необходимо определять с учетом снижения показателей прочностных свойств грунта при оттаивании. Расчеты показывают, что в зависимости от условий промораживания последующее оттаивание грунта может приводить к существенному понижению устойчивости откоса и увеличению давления на ограждение.

Прочность оттаивания песчаных грунтов в зависимости от их крупности при оттаивании снижается приблизительно на 10, 15%.

Оттаивание и динамическое воздействие различной интенсивности (от 0,5 до 1,5g) могут привести к уменьшению предельного сопротивления сдвигу оттаивающего водонасыщенного песка средней крупности на величину от 25 до 50%. Наибольшее уменьшение прочности при оттаивании песка происходит при частоте колебаний 20 Гц. Разработана методика приближенного определения величины угла внутреннего трения оттаивающих песчаных грунтов (j th).

Особенности организации и технологии работ при устройстве фундаментов в зимних условиях связаны с необходимостью снизить до допустимых пределов или полностью исключить вредное влияние процессов, определяющих морозоопасность грунтов на устойчивость оснований, фундаментов, откосов и креплений котлованов и других конструкций при взаимодействии с сезоннопромерзающим грунтом. Установление указанных выше показателей на основании анализа основных факторов, определяющих морозоопасные свойства грунтов, позволяет правильно и рационально осуществить мероприятия по обеспечению надежности сооружений, возводимых в зимних условиях. Положительный опыт решения сложных вопросов устройства фундаментов зданий и сооружений различного назначения в зимних условиях на пучинистых грунтах Санкт-Петербурга, Череповца, Улан-Батора и других районов подтверждает достоверность рассмотренных методов прогноза морозоопасных свойств грунтов.

Литература

- 1. Далматов Б.И. Воздействие морозного пучения грунтов на фундаменты сооружений. М.;Л.:Стройиздат, 1957.
- 2. Карлов В.Д. Новые методы оценки влияния промерзания и отаивания на изменение механических свойств сезоннопромерзающих грунтов оснований сооружений // Инженерно-геологические изыскания и исследования в криолитозоне теория, методология, практика: Материалы международной конференции. СПб., 2000. С. 124-130.

Стр. 3 из 3